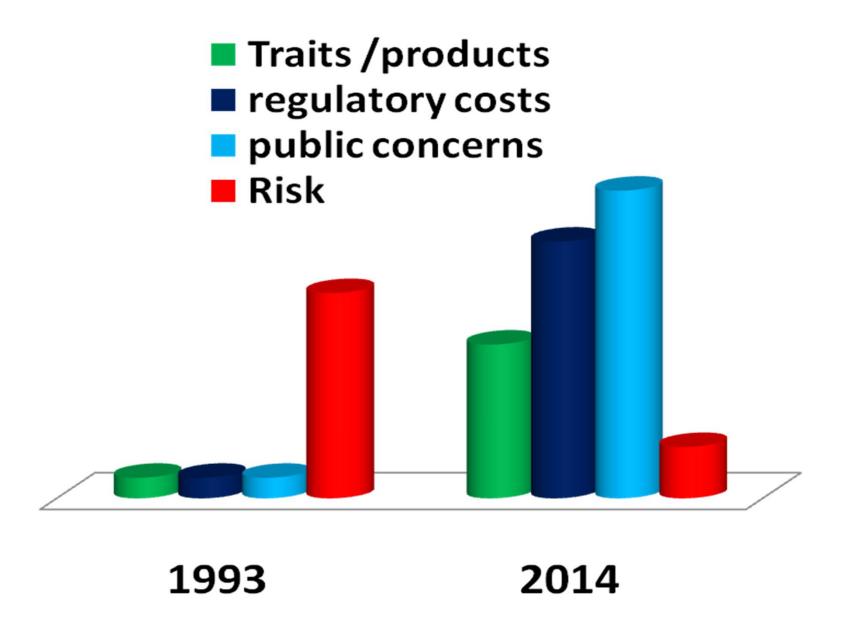
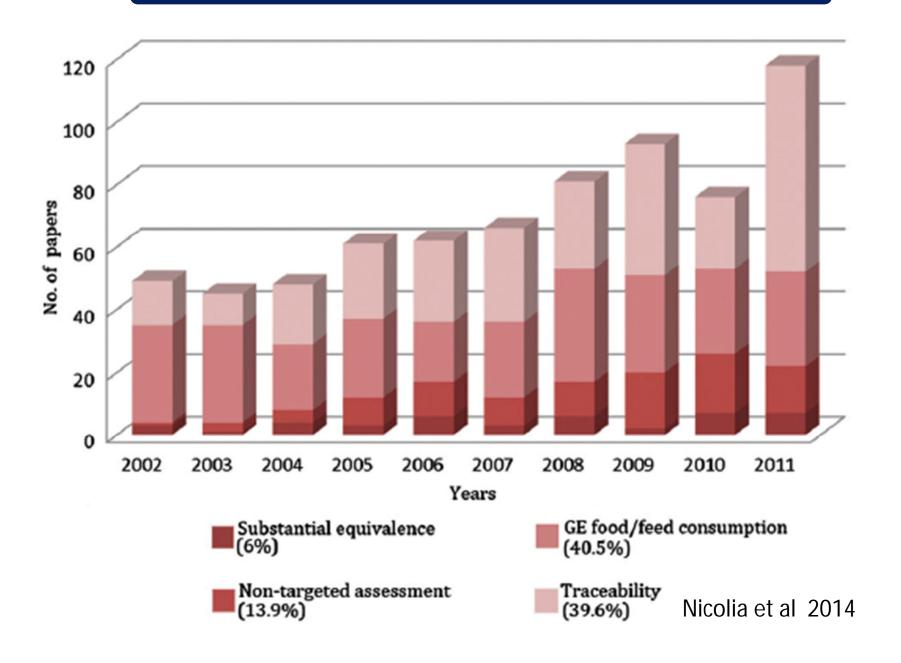

National & International Regulatory Framework

Technical Session II

Regulatory Frame Work Of GM Crops: National And International Framework

Workshop On Safety Assessment OfGM Food 14-15 October, 2015 Hotel The Claridges, New Delhi





Today's Topics

- Introduction
- International efforts in food safety
- Principles of GM food safety
- Current methods
- **❖Laws Governing GM food safety in various countries**
- Definitions of GMO in various countries and implications
- ❖Indian Regulatory Frame Work
- **❖**Future requirements

Publications out of 1783 total on GE food and Feed

Food Safety Systems—Institutions

- OECD: Organization for Economic Cooperation and Development
 - -Promotes policies for highest sustainable economic development in member states
 - Establishes guidelines for chemical testing, toxic chemicals, pesticides, and biotechnology
- Food and Agriculture Organization (FAO) of the United Nations
 - -Leads international efforts to ensure sufficient nutrition for all
- World Health Organization (WHO) of the United Nations
 - Provides scientific advice on matters related to food safety through its Food Safety Department
- International Life Sciences Institute (ILSI)
 - understanding of scientific issues relating to nutrition, food safety, toxicology, risk assessment, and the environment by bringing together scientists

FAO/WHO Codex Alimentarius Commission

Founded in 1963 by a joint initiative of the FAO and the WHO, the Codex Alimentarius Commission

- ➤ Formulates and harmonizes food standards and ensures global implementation
- ➤ Develops food standards, guidelines, and related texts such as codes of practice under the Joint FAO/WHO Food Standards Programme
- ➤ Generates guidelines to protect the health of consumers and ensures fair trade practices in food trade, and
- ➤ Promotes coordination of all food standards work undertaken by international governmental and non-governmental organizations

The Codex Alimentarius Commission established an Intergovernmental Task Force on Foods Derived from Biotechnology in 1999 to evaluate the health and nutritional implications of such foods.

The task force performs all of the functions listed above in relation to safety assessment of foods derived from genetically engineered organism based on the input of independent scientific expert consultations.

The Evolution of Food Safety Systems

The Codex Alimentarius Commission has issued (since 1963)

41 codes/ Hygiene or technological practice

237 Food Standards for commodities

25 guidelines for Contaminants

185 evaluations of pesticides

1,005 Evaluations of food additives

54 evaluations of veterinary drugs

3,504 Documents / Limits pesticide residues

So far 5 expert consultation reports regarding safety of foods derived from genetically engineered organisms (including microorganisms, plants and animals) have also been issued.

What is there that is not poison?

All things are poison and nothing is without poison.

Solely the dose determines that a thing is not a poison.

Paracelcius (1493-1541)

Toxicity Testing Methods

Many of the regulatory requirements for chemicals such as food additives and pesticides were first established during the 70s. These led to the development of a battery of tests to assess the safety of chemicals in foods

Most often, the results from three approaches are combined

- 1. Structure/function relationship toxicity/allergenicity
- 2. In vitro assays enzymes, receptors, cell lines
- In vivo animal studies

In order to monitor the performance of the product and the side effects, post-market surveillance can also be incorporated for certain products.

- 4. Post-market monitoring
 - Early warning
 - · Facilitates product recall
 - Absence of adverse health effects
 - Determining consumption patterns implications and applications relevant to food toxicology to help determine estimated daily intake (EDI)

Safety Assessments of Foods

Food toxicology is unique

- Complex–1000s of macromolecules, micronutrients, antinutrients
- Ever-changing properties Environment Genetic rearrangement occurring in the plant

 For processed foods – Additives and chemicals migrating from the package

- Common food items Presume their safety based on familiarity and history of use
 - Neurotoxic glycoalkaloids present in potatoes

 Therefore, it is stateed that – <u>Safety can not be proved</u> <u>absolutely</u>

Safety assessment seeks a level of <u>reasonable certainty</u> that harm will not occur (as long as they are free of contaminants)

The milestones in the international consensus on the safety assessment of biotechnology-derived foods include the following:

- ➤ILSI Europe Concise Monograph Series Genetic Modification Technology and Food Consumer Health and Safety (Robinson 2001),
- ➤ EU-sponsored Research on Safety of Genetically Modified Organisms. "GMO Research in EU 2001 Perspective." Report of a Workshop held by External Advisory Groups of the "Quality of Life and Management of Living Resources" Program, European Union,
- ➤ New Zealand Royal Commission on Genetic Modification (NZRC 2001),
- FAO/WHO Guidelines for Codex Alimentarius Committee, developed by Task Force for Foods Derived from Biotechnology Codex Ad Hoc Intergovernmental Task Force on Foods Derived from Biotechnology (FAO/WHO 2002, 2003), and
- ➤ILSI Crop composition database (www.cropcomposition.org) (ILSI 2003 to present).

Safety Assessment of Foods Derived from GE Crops

- Presumption of safety = Comparators Usually the traditionally bred parent crop
- Comparative assessment = Substantial Equivalence (FAO/WHO, 1991)
 - Agronomical and morphological characteristics
 - Chemical composition
 - Macro and micronutrients
 - Key toxins and anti-nutrients

Are there any significant changes?

Do they pose a hazard to human health?

Hazard Identification & Characterization of GE Crops

- The parent crop (the comparator) –
 hazards?
- -The transformation and inserted DNA
- -Gene product toxic/allergenic?
- Unintended changes
 - -Compositional changes
 - Assess any adverse impact
 - Allergy/toxicity/nutritional alterations

Test Methods to Assess the Safety of Foods Derived from GE Crops

Hazard Identification/Characterization

Parent Crop

- Phenotype
- Chemical
- Composition

Transformation

- Donor organism
- DNA construct
- Consequences of DNA insertion

Gene product(s)

- Proteins and metabolites
- Toxic potential
- Allergenic potential

GE crop

 Equivalence to parent crop

+ Exposure Assessment

Safety Assessment

Step 1 — Parent Crop

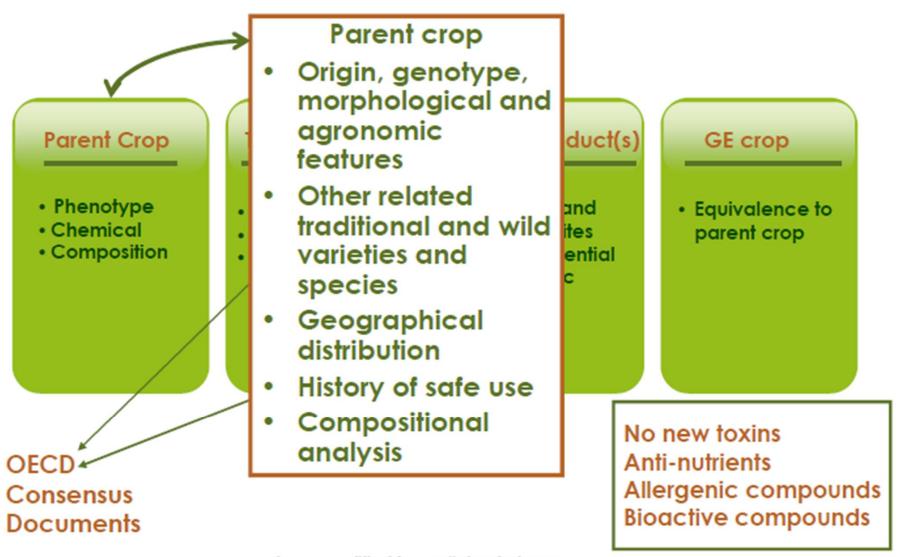


Figure modified from König et al, 2004

Step 2 — Donor Organism and Transformation

Parent Crop

Donor organism

- Taxonomy
- Allergen/toxic/ pathogenic
- Compositional information
- History of safe use/exposure
- Function of rDNAs used in the transformation process-used DNA should not be related to any adverse properties of the donor

Transformation

- Donor organism
- DNA construct
- Consequences of DNA insertion

DNA construct, transformation & insertion

- Vector DNA, components, source of the components, function in the source organism, organisms used to amplify
- A vector map with restriction sites
- Nucleotide sequence of the vector
- The method of gene delivery
 - Agrobacterium
 - Gun delivery
- Characterize introduced DNA sequences
 - PCR
 - Southern blot copy # Xs instability
 - Ends of the inserted sequence possibility of fusion proteins
- Characterize insertion site
 - Insertion junction
 - Disruption of major endogenous genes
 - Fusion proteins

Step 3 — Gene Products

Recombinant proteins/metabolites

- Protein-safety concern?
- Previous exposure/novel protein
- Structure, sequence, biochemical properties
 - Equivalent to the version produced in the source
 - MW
 - Aa sequence
 - Post-translational modification
 - Immuno-equivalance
- Mode of action
- Toxicity
- Allergenicity
 - Is the source an allergen/is the protein allergen?
 - Does the recombinant protein induce de novo sensitization?
 - Cross-reactivity with IgE induced by known allergens
 - FAO/WHO(2001), Codex Alimentarius (2003)

Gene product(s)

- Proteins and metabolites
- Toxic potential
- Allergenic potential

GE crop

 Equivalence to parent crop

Figure modified from König et al, 2004

Step 4 — GM Crop

Finally the GE crop itself is subjected to tests to ensure that it

is as s

Parent Crop

Phenotype

Composition

Chemical

GE crop

- Phenotypic and agronomic features
 - Alterations: metabolic perturbations/pleitropic effects due to the modification
- Compositional analysis
 - Macro- and micronutrients, endogenous toxins and anti-nutrients
 - From different geographies
 - Helps design the animal diet

duct(s)

GE crop

end ites ential c

nal counterpart.

Step 4 — GE Crop

An example:

- Roundup Ready soybeans
 - Soybeans naturally contain certain levels of anti-nutrients; trypsin inhibitor, lectins and isoflavones
 - Protein, oil, fiber, carbohydrates, moisture content, amino acid and fat composition in seeds and toasted soybean meal compared with conventional counterparts
 - Trypsin inhibitor levels were 11-26% higher in GE soybeans in defatted non-toasted soybean meal (not consumed-starting material)
 - In defatted, toasted soy meal trypsin inhibitor values were not different than the comparator
 - Feeding studies in rats, chickens, catfish, dairy cattle confirmed no nutritional value differences

Step 4 —GE Crop

Parent

- Pheno
- Chemi
- Comp

GE crop

- Animal studies(FAO/WHO, 2000)
 - Recommends dietary sub-chronic rat study
 - Broiler, dairy cattle, beef cattle, sheep, and swine
 - Uncertainties regarding equivalence
 - Foods are very complex
 - Can be administered at low multiples of the average human intake
 - Dietary imbalance false positive in terms of adverse effect
 - The use of biomarkers suggested (adaptive versus toxic)

GE crop

 Equivalence to parent crop

Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review......

- ▶12 long-term studies (of more than 90 days, up to 2 years in duration) and 12 multigenerational studies (from 2 to 5 generations)
- ➤90-day studies on GM feed for which long-term or multigenerational study data are available.
- ➤ Many parameters have been examined using biochemical analyses, histological examination of specific organs, hematology and the detection of transgenic DNA.
- ➤The statistical findings and methods have been considered from each study.
- ➤ Results from all the 24 studies do not suggest any health hazards and, in general, there were no statistically significant differences within parameters observed.
- ➤ However, some small differences were observed, though these fell within the normal variation range of the considered parameter and thus had no biological or toxicological significance.
- ➤ Seven with Bt Maize on chicken, cattle, goats sheep and one Rice on monkey

Chelsea Snell et. al (2012) Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food and Chemical Toxicology 50 (2012) 1134–1148

Test Methods to Assess the Safety of Foods Derived from GE Crops

As risk is correlated with levels and frequency of exposure to a certain hazard, safety assessment of food derived from GE crops can be completed with exposure assessment

Hazard Identification/Characterization

Parent Crop

- Phenotype
- Chemical
- Composition

Transformation

- Donor organism
- DNA construct
- Consequences of DNA insertion

Gene product(s)

- Proteins and metabolites
- Toxic potential
- Allergenic potential

GE crop

 Equivalence to parent crop

+ Exposure Assessment

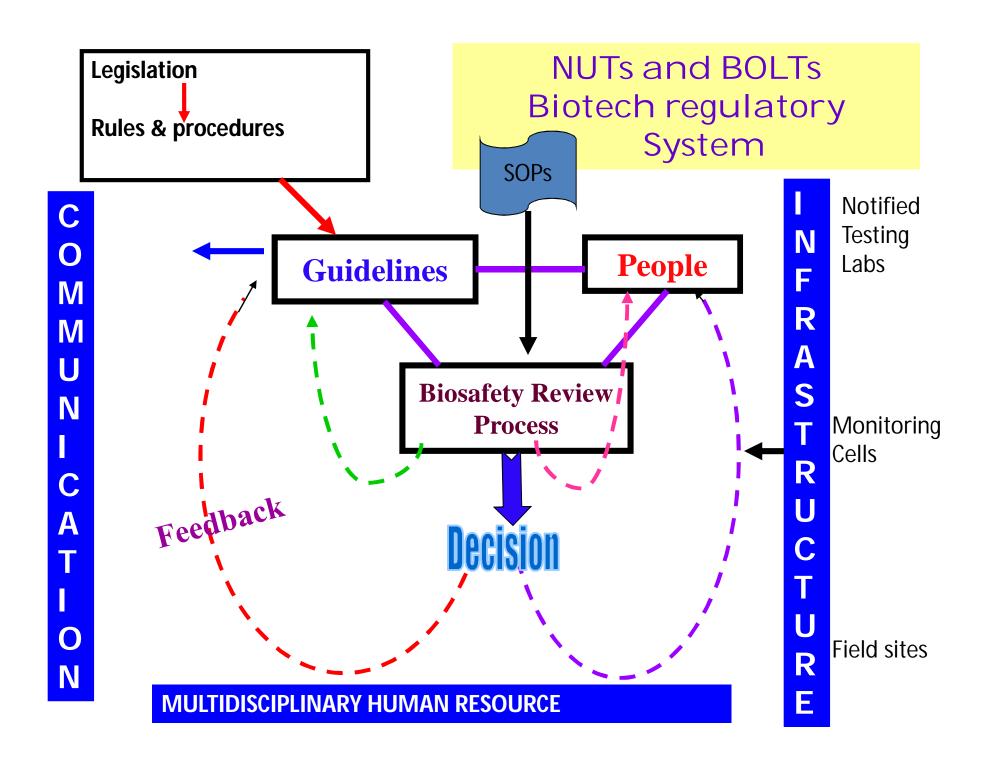
Safety Assessment

Figure modified from König et al, 2004

Exposure Assessment

- Food supply information
- Household expenditure
- Food consumption surveys
- Import statistics
- Recombinant proteins in transgenic plants: 0.01-0.1% of total protein content (Betz et al, 2000)
- Estimated daily intake (EDI) for humans: 0.017
 0.07mg/kg/day (König et al, 2004)
- NOAEL with acute toxicity tests >100 mg/kg/day (Chassy et al, 2002)

Even if people consumed ~1,400X that of the EDI, there would not be a safety concern.


Some facts of Gene products

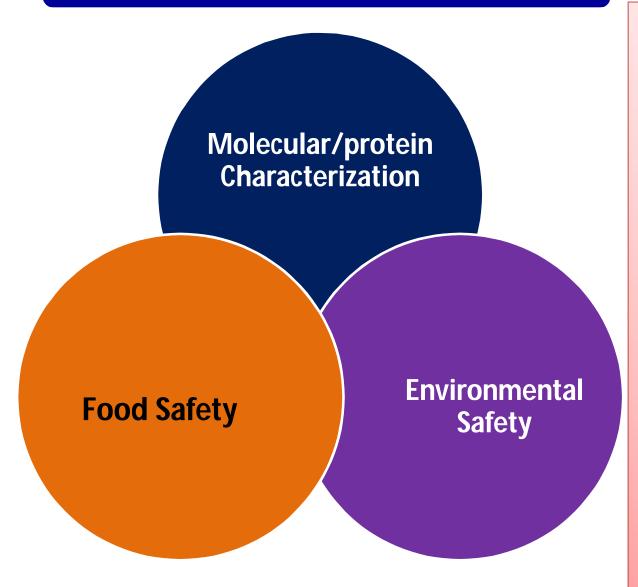
Protein studied	NOEL	Stable to digestion	Stable to processing?
Cry1Ab	>4000	No (30s)	No
Cry1Ac	>5000	No(30s)	No
Cry 2Aa	>4011	No(30s)	No
Cry 3A	>1450	No(30s)	No
Cry 3Bb	>3780	No(30s)	No
Cry 9C	>3760	+/- No(30s)	Partial
NPTII	>5000	No	No
CP4EPSPS	>572	No	N.A
GUS	>100	No	N.A

Exposure Assessment

- GE seeds may be commingled with conventional ones
- Food ingredients derived from commodity crops are in many different products
- Food processing might alter ratios, may cause degradation

Therefore, current exposure assessment approach does not take these degradation and overestimation into account to achieve the highest level of safety

Regulation of GM Crops



The decision to regulate a plant is based on a variety of considerations

- **>**Legal
- **Social**
- **Scientific**

Different jurisdictions will regulate differently based on their existing laws and regulations

Principles of scientific risk assessment

Food and feed safety assessment and the environmental risk assessment are separate and distinct evaluations and share some common elements of information through molecular the characterization of the organism GM and characterization of expressed, transgenic proteins

Variable Agencies and laws governing GM crop regulation

Country	Food safety	Environmental Safety
CANADA	Health Canada: Sole responsibility for evaluating the human health safety of all foods Authority is under the Food and Drugs Act and Regulations	Ministry of Environment
USA	Food and Drug Administration (Center for Food Safety and Applied Nutrition)	Environmental Protection
India	Ministry of Environment	protection Act 1986 t, Forests and Climate Change And Technology

Variable Agencies and laws governing GM crop regulation

Country	Food safety	Environmental Safety
European Union	In 2012, the European Food Safety Authority (EFSA) which provides guidance under the framework of Regulation (EC) No 1829/2003 on GE food and feed.	•
Argentina	National Advisory Commission on Agricultural Biotechnology	National Service of Agri- food Health and Quality (Food and feed)
Brazil	National Biosafety Technical Commission (CTNBio, part of the Ministry of Science, Technology and Innovation)	

Variable Agencies and laws governing GM crop regulation

Country	Food safety	Environmental Safety
China	Regulatory oversight from laboratory to commercial use is within the Ministry of Agriculture (MoA)	
Australia	Australia- New Zealand Food Safety Authority	Office of Gene Technolgy Regulator. Gene technology Act 2000. Department of Health
South Africa	Ministry of Agriculture, Forest and Fisheries GMO Act, 1997, Promulgated in 1999, Amended in 2006 and implemented in 2010	

Establishment of regulatory oversight Different countries took different regulatory approaches:

- ➤ New gene technology laws vs. extending scope of existing laws
- **➤**Oversight by different authorities:
 - ➤ Ministry of Agriculture (or Fisheries)
 - **➤ Ministry of Environment**
 - **➤ Ministry of Science**
 - > Multiple ministries
- ➤ Differences often a function of existing regulatory structures and legal enabling authorities, as well as different philosophies Some countries are members of Cartagena Protocol, some not
- ➤ Regulatory approach has affected the development of Plant Biotechnology

There are as many regulatory approaches as there are countries

- >Little consistency between countries
- > Much room for interpretation within countries
- ➤ Regulatory approach does not matter so long it is effective
- > Science based and defensible
- > Transparent
- > Expeditious
- ➤ Credible to the public who may be more concerned about non scientific, value based issues

Establishment of regulatory oversight Different countries took different regulatory approaches:

Differences between countries

- Regulation endpoints based upon adverse effects or defined risks
- Combined or separate environmental or food/feed safety reviews
- Triggers- novelty, GE/GMO, combination
- Adverse effects
- Number of ministries involved in regulation (and in developing positions for international discussions)

Variable definitions in laws across world would be determining future course of regulation of new technologies

Country	Definition by Law of Land
CANADA	Novel Foods : Products that have never been used as a food; foods which result from a process that has not previously been used for food; or, foods that have been modified by genetic manipulation.
USA	USDA: A "regulated article" must meet two requirements:Produced using genetic engineering (recombinant DNA techniques) AND Donor organism, recipient organism, vector, vector agent, is a plant pest OR Is an unclassified organism the Administrator determines is a plant pest or has reason to believe is a plant pest

Variable definitions in laws across world would be determining future course of regulation of new technologies

Country	Definition by Law of Land
EUROPEAN UNION	GMO/GMM defined as "an organism/micro-organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination" Annexes in Directive: Non-exhaustive list of techniques that lead to genetic modification; Techniques not considered to result in genetic modification (exhaustive list) AND Techniques excluded from the scope of the GMO legislation (exhaustive list)
ARGENTINA	Genetically Modified Plant Organism (GMPO): plant organism that has a <i>combination of genetic material</i> obtained through the application of modern biotechnology. Combination of genetic material: A new DNA sequence that has been introduced into the plant genome and encodes for a new protein or some functional element.

Variable definitions in laws across world would be determining future course of regulation of new technologies

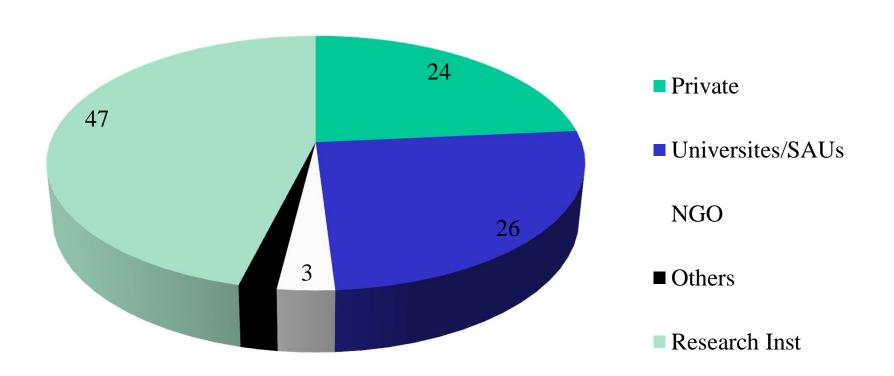
Country	Definition by Law of Land
AUSTRALIA	genetically modified organism means:an organism that has been modified by gene technology; or an organism that has inherited particular traits that occurred in the initial organism because of gene technology; or anything declared by the regulations to be a GMO; but does not include: a human being, if the human being is covered by paragraph (a) only because [of] somatic cell gene therapy; or an organism declared by the regulations not to be a GMO
INDIA	Genetic engineering" means the technique by which heritable material, which does not usually occur or will not occur naturally in the organism or cell concerned, generated outside the organism or the cell is inserted into said cell or organism. It shall also mean the formation of new combinations of genetic material by incorporation of a cell into a host cell, where they occur naturally (self cloning) as well as modification of an organism or in a cell by deletion and removal of parts of the heritable material;

Variable definitions in laws across world

Country	Definition by Law of Land
OECD	rDNA (1986) safe development and use of rDNA organisms ➤ Techniques used to produce organisms with novel genetic combinations ➤ Represent an extension of conventional genetic procedures ➤ Risks presented by organisms same in kind as those posed by any other organism. ➤ Governed by same physical and biological laws.
Cartagena protocol	"modern biotechnology" means the application of <i>in vitro</i> nucleic acid techniques, including recombinant deoxyribonucleic acid and direct injection of nucleic acid into cells or organelles, or fusion of cells beyond the taxonomic family, that overcome natural physiological reproductive or recombination barriers and that are not techniques used in traditional breeding and selection but does not include tissue culture of unmodified plant cells; animal cell culture of unmodified gametes; and natural processes such as conjugation, transduction, transformation; polyploidy induction; and mutation breeding;

Definition of rDNA

- No agreed upon definition in OECD texts.
- Reference country definitions
- Sometimes use "transgenic"
- GMOs
- LMOs
- GEOs.
 - Introduction of a trait.


Similarities between countries

- Risk assessment systems
 - Biology + trait + environment X interaction
 - Field Trials
 - Use of familiarity
 - Comparative
 - Step-by-step, case-by-case
 - Conditional approvals
 - Federal structure and local laws

Summary of survey on GM research Activity 2014-2015

Source MOEFCC

243 Agencies

PUBLIC PERCEPTION AND RESPONSE

Task force on Agricultural Biotechnology M/o Agriculture

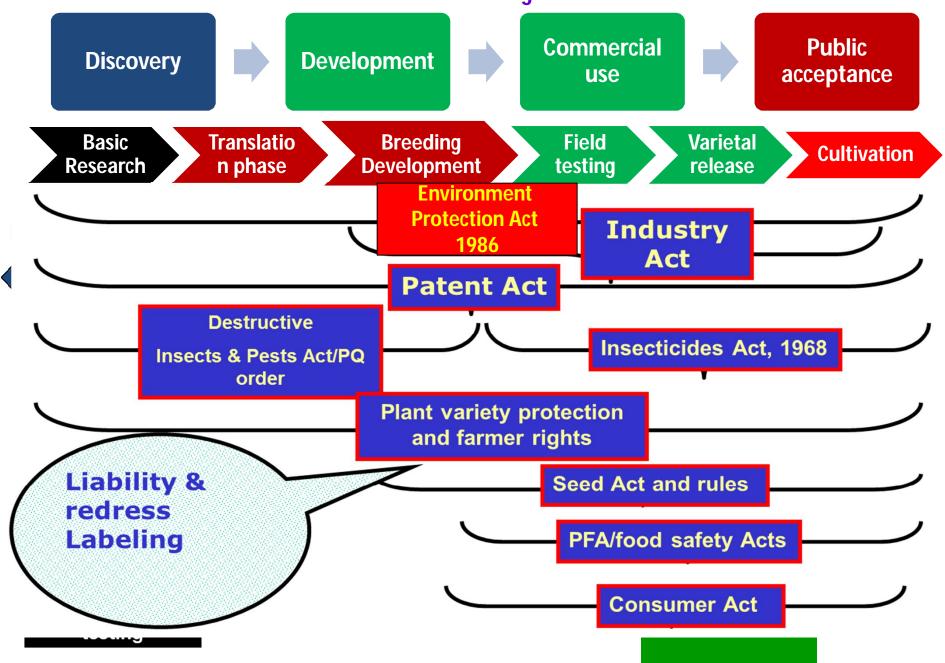
2003-2005

Need for New
Authority
Priorities
Do 's do
not's

Task force on biopharma

M/o Environment & Forests

2004-2006


Need for New Authority Simplification of biopharma regulations Expert
Committee On
Genetically
Modified on food
safety

2005-2006

Harmonize food safety assessment with international systems

Complexity with Research Development and Commercialization of Transgenics

Regulatory frame work - Scope

ENVIRONMENT PROTECTION ACT 1986

RULES FOR THE MANUFACTURE, USE/IMPORT/EXPORT AND STORAGE OF HAZARDOUS MICROORGANISMS/ GENETICALLY ENGINEERED ORGANISMS OR CELLS

New Delhi, The 5th December, 1989

Applicable to:

- ➤ The import, export, transport, manufacture, process, use or sale of GMOs and use of GMOs for research
- **►** <u>Authorization for production of genetically modified</u> <u>microorganisms, plants and animals</u>
- ➤ Approval for deliberate or intentional release of GMOs into the open environment
- ➤ Approval for production, sale and import of <u>foodstuff</u>, <u>ingredients in foodstuff including processing aid</u> which may contain GMOs or cells

Regulatory frame work - Scope..... Statutory Bodies

National Level	Genetic Engineering Appraisal Committee (GEAC)	Final Approval for environmental release	Ministry of Environment and Forests
National Level	Review Committee For Genetic Manipulation (RCGM)	Scientific risk assessment of plants, animals, biopharma, microbes and Guidelines	Ministry of S&T Department of Biotechnology
State Level	State Biotechnology Coordination Committee (SBCC)	Local monitoring and compliance	29 State governments
Institute university/company level	Institutional Biosafety Committee (IBSC) with Nominee of RCGM	R&D and Contained Experiments	Ministry of S&T Department of Biotechnology

Expertise in RCGM (about 36 members) including 6 interministerial nominations

Mandate: Scientific Risk assessment of all recombinant products and recommendation to GEAC /DCGI etc

Core Characterization: Molecular biologist; Microbiologists; Biochemist; Toxicologists; Bioinformatics; Biostatistics

Animal Biotechnology Physiologist; Pathologist; Nutritionist; Animal Breeder; Veterinary Scientist; Fisheries/ aquaculture scientist

Plant Biotechnology; Physiologist; Pathologists; Entomologist; Agronomist; Plant Breeder

Human health Biotechnology; Immunologist; Epidemiologist; Pharmacologist; Clinical Scientist

Industrial and Environmental Biotechnology; Ecologist; Environmental biologist; industrial microbiologist; Bioprocessing and Analytical Chemist

Composition of GEAC

- (i) Chairman Additional / Special Secretary, MoEF

 Co-Chairman Representative of Department of Bio-technology

 Vice-Chairman Joint Secretary, MoEF
- (ii) Members:
- (iii) Expert Members: Representatives of concerned Agencies and Departments, namely, Ministry of Industrial Development, Department of Biotechnology and the Department of Atomic Energy. Director General-Indian Council of Agricultural Research, Director General Indian Council of Medical Research, Director General Council of Scientific and Industrial Research, Director General-Health Services, Plant Protection Adviser, Directorate of Plant Protection, Quarantine and Storage, Chairman, Central Pollution Control Board and AYUSH.
- (iv) Member Secretary: An official of the Ministry of Environment, Forest and Climate Change.
- (v) Co-opt: 13 Experts co-opted

Regulatory frame work - Scope..... Guidelines

The approach to formulation of new Guidelines or for review or revision of protocols, guidelines of safety assessment of GM crops in India at national level is:

to examine all the available peer reviewed research publications and documented experiences followed by wide ranging consultation at multiple level of stakeholders to arrive at consensus documents for wider adoption and harmonisation of practices at global level

CURRENT ROADMAP DEVELOPMENT PROCESS OF A GM CROP

GE PLANT MATERIAL REGULATED UNDER RULES, 1989 & RELEVANT GUIDANCE IS IN PLACE

- Guidelines for Research in Transgenic Plants, 1998
- Guidelines and Standard Operating Procedures (SOPs) for Confined Field Trials of Regulated Genetically Engineered (GE) Plants
- Guidelines for the Monitoring of Confined Field Trials of Regulated, GE Plants
- Guidelines for the Safety Assessment of Foods Derived from Genetically Engineered Plants
- · Protocols for Food and Feed Safety Assessment of GE crops
 - 5 Application for environmental release
 - 6 Application for food safety assessment
 - Application for confined field trials

1

2

4

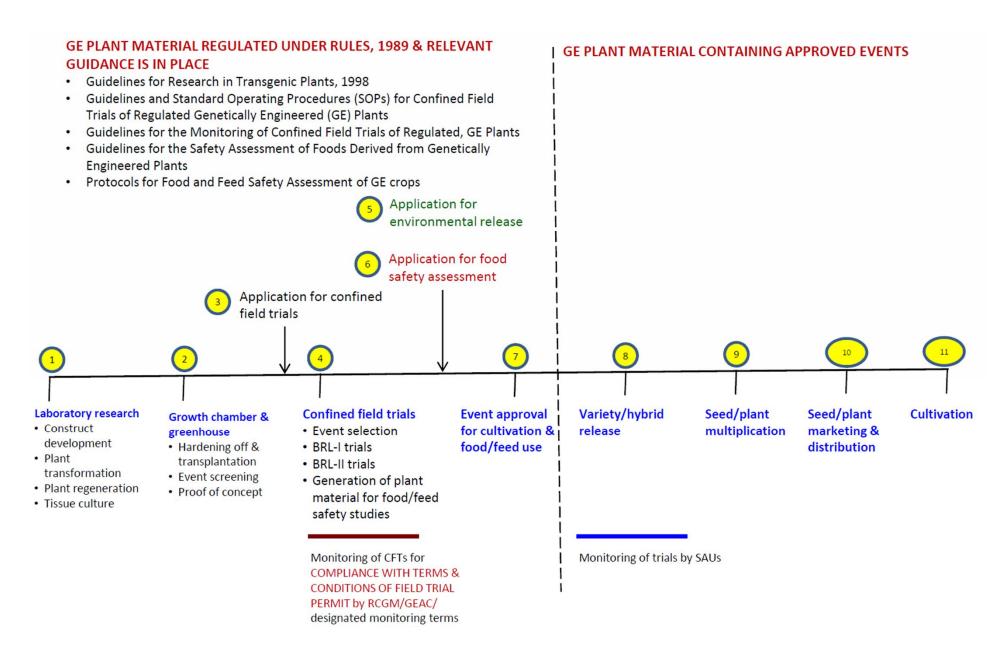
7

Laboratory research

- Construct development
- Plant transformation
- Plant regeneration
- · Tissue culture

Growth chamber & greenhouse

- Hardening off & transplantation
- · Event screening
- Proof of concept


Confined field trials

- Event selection
- BRL-I trials
- BRL-II trials
- Generation of plant material for food/feed safety studies

Event approval for cultivation & food/feed use

Monitoring of CFTs for COMPLIANCE WITH TERMS & CONDITIONS OF FIELD TRIAL PERMIT by RCGM/GEAC/ designated monitoring terms

CURRENT ROADMAP DEVELOPMENT PROCESS OF A GM CROP

Specific information and data requirements for the Food & Feed Safety and Environmental Risk Assessment of GE plants

Description of the genetically engineered plant

Biology of the non-transgenic host plant

Donor organism information

Molecular characterization

Bio-informatic analysis: potential toxicity and allergenicity

Expression of introduced protein(s)

Compositional analysis

Acute oral safety limit study

Pepsin digestibility assay

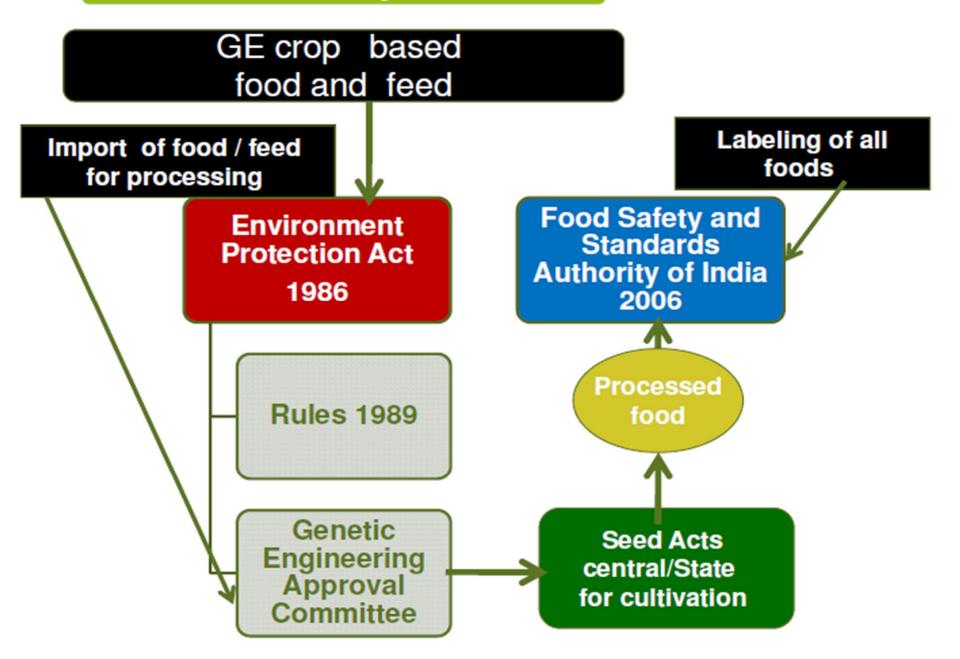
Protein thermal stability

Sub-chronic feeding study in rodents (if required)

Livestock feeding study (if required)

Inheritance of introduced trait

Stability of introduced trait


Reproductive and survival biology

Impact on non-target organisms

GM Food Safety Evaluation

		Argentina	Australia	Canada	Philippines	Japan	S. Africa	EU	USA
Category of Information/Data Requirement	India				V 2				
Host information	X	X	X	X	X	X	X	X	X
Donor information	X	X	X	X	X	X	X	X	X
Molecular characterization	X	X	X	X	X	X	X	X	X
Characterization of expressed protein	X	X	X	X	X	X	X	X	X
Nutritional composition	X	X	X	X	X	X	X	X	X
Potential toxicity of novel protein(s)	X	X	X	X	X	X	X	X	X
Potential allergenicity of novel protein(s)	X	X	X	X	X	X	X	X	X

GE Food Safety In India.

Now and In The Future

- FAO/WHO, 1991, 1996, 2000, 2001
- Codex Alimentarius Commission, 2003
- NAS, 1987
- NRC, 1989, OECD, 1993, 1996, 1998, 2002

Conclusions

Potential risks that foods derived from GE crops are not different than those of new varieties produced with conventional breeding

- Substantial equivalence
- Case-by-case analysis tailored for the GE crop under question
- No adverse effects so far
- Future? Advances in molecular biology, biochemistry, allergy science, nutrition, and toxicology

In the future?

- Existing methodologies are considered sufficient for safety assessment of GE crops
- First generation of GE crops; herbicide tolerant or insect resistant
- Next generation of GE crops; more complex nutritionally enhanced or resistant to abiotic stress
- New methodologies for safety assessment?
- Most likely

Resources

http://www.who.int/foodsafety/biotech/en/

http://www.fao.org/UNFAO/about/index_en.html

http://www.cfsan.fda.gov/list.html

http://www.foodsafety.gov/~fsg/biotech.html

BIGMAP (Biosafety Institute for Genetically Modified Agricultural Products) Iowa State University

